MATEMÁTICA
Aplicada a la Ingeniería Química

Juan De Burgos Román
Editorial: García Maroto Editores
Edición: 
Fecha Publicación: 2011 
ISBN:  9788415214755 
ISBN ebook:  9788415214762 
Páginas:  705 
Grado:  Universitario 
Área:  Ciencias y Salud
Sección:  Matemáticas 
Idioma:  Español 
  Tweet

Parte I. CÁLCULO DE UNA VARIABLE
REAL

Capítulo 1. LÍMITES DE LAS SUCESIONES
DE NÚMEROS REALES 3
1.1. Los números reales 3
1.2. Límites de sucesiones: definiciones 8
1.3. Órdenes de infinitésimos e infinitos. Equivalencias 9
1.4. Propiedades de los límites 14
1.5. · es completo: propiedades 22
Ejercicios y Cuestiones 27

Capítulo 2. LÍMITES Y CONTINUIDAD DE FUNCIONES
DE UNA VARIABLE 39
2.1. Límites de funciones de una variable: definiciones 39
2.2. Órdenes de infinitos e infinitésimos. Equivalencias 41
2.3. Propiedades de los límites 45
2.4. Funciones continuas 50
2.5. Continuidad en intervalos 53
2.6. Continuidad uniforme 54
Ejercicios y Cuestiones 57

Capítulo 3. DERIVADAS DE FUNCIONES
DE UNA VARIABLE 67
3.1. Concepto de derivada 67
3.2. Propiedades y cálculo de derivadas 70
3.3. Teoremas del valor medio 74
3.4. Desarrollos limitados 79
3.5. Fórmula de Taylor 86
Ejercicios y Cuestiones 89

Capítulo 4. APLICACIONES DE LAS DERIVADAS
(UNA VARIABLE) 105
4.1. Estudio local de una función 105
4.2. Curvas en explícitas 107
4.3. Generalidades sobre curvas en polares 113
Ejercicios y Cuestiones 119

Capítulo 5. CÁLCULO DE PRIMITIVAS 131
5.1. Integral indefinida 131
5.2. Métodos generales de integración 134
5.3. Integración de las funciones racionales 135
5.4. Integración de algunas funciones trascendentes 138
5.5. Integración de algunas funciones irracionales 140
Ejercicios y Cuestiones 145

Capítulo 6. INTEGRAL SIMPLE 157
6.1. Integral definida 157
6.2. Propiedades fundamentales de las integrales 161
6.3. Integrales impropias 164
6.4. Criterios de convergencia para integrales
impropias 167
6.5. Aplicaciones geométricas de la integral 170
Ejercicios y Cuestiones 177

Capítulo 7. SERIES NUMÉRICAS Y DE POTENCIAS 191
7.1. Series de términos reales 191
7.2. Criterios de convergencia (para series de términos
positivos) 198
7.3. Series de términos reales cualesquiera 201
7.4. Series de potencias 203
7.5. Serie de Taylor 206
Ejercicios y Cuestiones 209

Parte II. ÁLGEBRA

Capítulo 1. RANGO (DE VECTORES Y DE MATRICES) 229
1.1. Vectores de n componentes 229
1.2. Rango de un sistema de vectores 232
1.3. Matrices: rango 237
Ejercicios y Cuestiones 241

Capítulo 2. OPERACIONES CON MATRICES 253
2.1. Álgebra de matrices 253
2.2. Matriz inversa 260
Ejercicios y Cuestiones 265

Capítulo 3. DETERMINANTES 279
3.1. Definición y cálculo 279
3.2. Otras propiedades básicas 284
Ejercicios y Cuestiones 289

Capítulo 4. SISTEMAS DE ECUACIONES LINEALES 303
4.1. Definición y equivalencia 303
4.2. El método de Gauss 308
4.3. Teoremas de Cramer y Rouche 312
Ejercicios y Cuestiones 31

Capítulo 5. ESPACIOS VECTORIALES 331
5.1. Espacio vectorial: concepto y dependencia lineal 331
5.2. Dimensión finita. Rango 337
5.3. Suma de subespacios 340
Ejercicios y Cuestiones 345

Capítulo 6. APLICACIONES LINEALES 361
6.1. Aplicaciones lineales 361
6.2. Matrices de las aplicaciones lineales 366
6.3. Operaciones con aplicaciones lineales 371
6.4. Espacio dual 375
Ejercicios y Cuestiones 377

Capítulo 7. FORMAS CUADRÁTICAS 395
7.1. Formas bilineales y cuadráticas 395
7.2. Conjugación respecto de una forma cuadrática 400
7.3. Diagonalización de una forma cuadrática 401
7.4. Formas cuadráticas reales 406
Ejercicios y Cuestiones 411

Capítulo 8. ESPACIOS VECTORIALES EUCLÍDEOS 427
8.1. Producto escalar 427
8.2. Ortogonalidad 431
8.3. Proyección ortogonal 434
8.4. Transformaciones y matrices ortogonales 437
Ejercicios y Cuestiones 441

Capítulo 9. AUTOVALORES. ENDOMORFISMOS
DIAGONALIZABLES 457
9.1. Autovalores y autovectores 457
9.2. Endomorfismos diagonalizables 462
9.3. Diagonalización ortogonal 465
Ejercicios y Cuestiones 469

Parte III. CÁLCULO DE VARIAS
VARIABLES

Capítulo 1. LÍMITES Y CONTINUIDAD
DE FUNCIONES DE VARIAS VARIABLES 487
1.1. Límite de una función en un punto 487
1.2. Propiedades de los límites 489
1.3. Funciones continuas 493
1.4. Propiedades globales de la continuidad 495
1.5. Continuidad uniforme 497
Ejercicios y cuestiones 499

Capítulo 2. DERIVADAS Y DIFERENCIALES
(PARA VARIAS VARIABLES) 511
2.1. Derivadas (según vectores y parciales) 511
2.2. Diferencial de una función 516
2.3. Derivadas y diferenciales de orden superior 523
2.4. Derivadas y diferenciales de las funciones compuestas 528
Ejercicios y cuestiones 535

Capítulo 3. APLICACIONES DE LAS DERIVADAS
(VARIAS VARIABLES) 553
3.1. Funciones implícita e inversa 553
3.2. Extremos relativos 560
3.3. Extremos relativos condicionados 563
Ejercicios y cuestiones 569

Capítulo 4. INTEGRALES MÚLTIPLES
Y PARAMÉTRICAS 585
4.1. Integración en intervalos 585
4.2. Integración en conjuntos acotados 590
4.3. Métodos de integración 594
4.4. Integrales paramétricas 599
4.5. Integrales paramétricas impropias 603
Ejercicios y cuestiones 609

Parte IV. INTRODUCCIÓN
A LAS ECUACIONES
DIFERENCIALES

Capítulo 1. CONCEPTOS GENERALES 631
1.1. Ecuaciones diferenciales 631
1.2. Interpretación geométrica de una EDO de primer
orden 637
1.3. Sistema de ecuaciones diferenciales 639
Ejercicios y Cuestiones 641

Capítulo 2. MÉTODOS DE RESOLUCIÓN 647
2.1. Ecuación diferencial ordinaria de primer orden 647
2.2. Ecuación diferencial ordinaria de orden n 671
Ejercicios y Cuestiones 679

*La edición digital no incluye códigos de acceso a material adicional o programas mencionados en el libro.

Juan De Burgos Román
Catedrático de Matemática Aplicada
Escuela Superior de Ingenieros Aeronáuticos
Universidad Politécnica de Madrid
Escribe tu opinión

No se han encontrado comentarios


Libros que también te pueden interesar

MÉTODOS DE COMPRA

* Precios con IVA

Alquilar Libro Digital

Periodo Precio
365 días 10,95 €
Hazte Premium

Periodo Precio
30 días 9,90 €
120 días 35,90 €
365 días 99,90 €
Comprar en Papel
(Incluye 1 año de alquiler del libro digital)
59,00 €
 
BÚSQUEDA POR CONTENIDO

Busca el término o términos dentro de cada uno de los libros