
MATEMÁTICAS
Curso de iniciación universitaria
Juan De Burgos Román
Editorial: García Maroto Editores
Edición: 1
Fecha Publicación: 2011
ISBN: 9788415214793
ISBN ebook: 9788415214823
Páginas: 149
Grado: Universitario
Área: Otras
Sección: Pre-Universidad
Idioma: Español
Tweet
Edición: 1
Fecha Publicación: 2011
ISBN: 9788415214793
ISBN ebook: 9788415214823
Páginas: 149
Grado: Universitario
Área: Otras
Sección: Pre-Universidad
Idioma: Español
Tweet
Capítulo 1. CONJUNTOS Y FUNCIONES 1
1.1. Teorías matemáticas 1
1.2. Un poco de lógica 2
1.3. Conjuntos y subconjuntos 3
1.4. Unión e intersección de conjuntos 4
1.5. Cuantificadores 5
1.6. Aplicaciones o funciones 6
1.7. Aplicaciones inyectivas, sobreyectivas y biyectivas 7
1.8. Funciones reales de una variable real 8
Ejercicios y problemas 10
Capítulo 2. ALGO SOBRE LOS NÚMEROS 15
2.1. Sobre los números naturales 15
2.2. Algo sobre divisibilidad de números naturales 17
2.3. Los números enteros 18
2.4. Los números racionales 19
2.5. Radicales, desigualdades, valor absoluto 21
2.6. Números combinatorios 22
Ejercicios y problemas 24
Capítulo 3. POLINOMIOS 29
3.1. Polinomios: Suma y producto 29
3.2. División de polinomios 30
3.3. Raíces de los polinomios 32
3.4. Máximo común divisor y mínimo común múltiplo 34
Ejercicios y problemas 36
Capítulo 4. TRIGONOMETRÍA 39
4.1. Algo acerca de los ángulos 39
4.2. Las razones trigonométricas 40
4.3. Fórmulas trigonométricas 42
4.4. Resolución de triángulos 44
4.5. Funciones trigonométricas o circulares 46
Ejercicios y problemas 48
Capítulo 5. FUNCIONES POTENCIALES,
EXPONENCIALES, LOGARÍTMICAS
E HIPERBÓLICAS 51
5.1. Potencias y logaritmos 51
5.2. Funciones potenciales 53
5.3. Funciones exponenciales y logarítmicas 55
5.4. Funciones hiperbólicas 57
Ejercicios y problemas 59
Capítulo 6. CÁLCULO DE DERIVADAS
Y DE PRIMITIVAS 63
6.1. Derivadas: conceptos básicos 63
6.2. Cálculo de derivadas 64
6.3. Primitivas de una función; integral indefinida 65
6.4. Integrales inmediatas 67
6.5. Métodos generales de integración 69
6.6. Integración de funciones racionales 71
6.7. Integración de algunos tipos de funciones 73
Ejercicios y problemas 75
Capítulo 7. GEOMETRÍA CARTESIANA DEL PLANO 79
7.1. Los vectores del plano 79
7.2. Producto escalar 80
7.3. Puntos y rectas 82
7.4. Ángulos y distancias 84
Ejercicios y problemas 87
Capítulo 8. LOS NÚMEROS COMPLEJOS 89
8.1. Justificación: necesidad de los números complejos 89
8.2. El sistema de los números complejos 90
8.3. Forma binómica de los números complejos 91
8.4. Representación gráfica de los números complejos 92
8.5. Módulo y argumento 93
8.6. Forma módulo-argumental de un complejo 94
8.7. Ecuaciones complejas de movimientos y semejanzas 96
8.8. Raíz n-ésima de un número complejo 98
8.9. Exponencial compleja 99
Ejercicios y problemas 100
Capítulo 9. ALGO DE INTEGRALES Y ÁREAS 105
9.1. Introducción: áreas e integral 105
9.2. Concepto de integral 107
9.3. Propiedades de las integrales 109
9.4. Métodos generales de integración 111
9.5. Cálculo de áreas 113
Ejercicios y problemas 115
Capítulo 10. CUESTIONES DE ÁLGEBRA LINEAL 119
10.1. Concepto de matriz; primeras propiedades 119
10.2. Operaciones con matrices 120
10.3. Determinantes 122
10.4. Matriz inversa 123
10.5. Sistemas de ecuaciones lineales 125
10.6. Método de Gauss 126
10.7. Fórmula de Cramer 128
10.8. Rango; teorema de Rouché 129
Ejercicios y problemas 132
*La edición digital no incluye códigos de acceso a material adicional o programas mencionados en el libro.
En estos nuevos tiempos, más que en ningún otro, todo cambia
con apresuramiento, y ello es especialmente llamativo en el campo
del estudiar y del aprender. Cuando nos disponemos a reentrar en
este mundo, para aumentar nuestros conocimientos o cambiar de
rumbo, nos encontramos con que aquellos saberes nuestros, que ayer
mismo nos parecían los más útiles y acertados, hoy pueden venir a
resultar poco adecuados o incompletos. Cada vez que alguien retoma
la vía del aprendizaje, para mejorar, renovarse, progresar o superarse,
suele descubrir que sus cimientos no son suficientemente firmes
y se ve en la precisión de reforzarlos. Es cosa muy frecuente el
encontrarse con personas que, al ponerse a ampliar estudios, se están
viendo obligadas a empezar por consolidar aquellos conocimientos
que les servirán de base, completándolos y actualizándolos, pues los
que tienen resultan ser escasos, ya sea porque son menores de lo que
ellos creían, o porque son insuficientes para abordar debidamente la
nueva tarea que acometen.
Lo que aquí nos ocupa, lo relativo a las enseñanzas que requieren
de las Matemáticas, no es un caso de excepción, sino que, muy al
contrario, ocurre con muchísima frecuencia que, al iniciar unos nuevos
estudios con contenidos científicos o tecnológicos, muchos, de
quienes son admitidos en ellos, necesitan completar sus saberes en
asuntos básicos de Matemáticas. Obviamente, no todos los que inician
unos nuevos estudios van a necesitar de los mismos complementos,
que unos harán aguas por aquí, otros por allá y estos otros
por acullá. Es muy frecuente el caso de quien concluyó su bachilletaro
de modo poco brillante y, al acceder a la universidad, descubre que sus saberes le son insuficientes para entender debidamente las
cuestiones que allí se abordan.
Ante una situación como la descrita, resultará muy conveniente
el disponer de un texto como el que aquí ofrecemos. En él se encontrará
un pequeño «tutifruti» matemático; en él se incluyen todos
aquellos temas básicos que, para quienes ya han cursado la enseñanza
media y salvando casos muy específicos, se precisan para esta
tarea de actualización, reciclaje o nivelación de la que venimos
hablando.
Pensando, fundamentalmente pero no de modo exclusivo, en el
caso de la incorporación a la universidad, todos los temas que aquí
se incluyen son de interés general, pero no serán todos, necesariamente,
del interés particular de cada uno. Se podrá acudir sólo a
aquellos de los que se vaya a necesitar, pues los temas son independientes
y la omisión u olvido de unos no perjudicará a la comprensión
de los otros.
Lo que aquí se ofrece es fruto de la experiencia de muchos años,
a lo largo de los cuales este material ha ido evolucionando, adaptándose
a las necesidades del momento, como es el caso presente. Así
pues, esperamos que siga siendo de utilidad.
Catedrático de Matemática Aplicada
Escuela Superior de Ingenieros Aeronáuticos
Universidad Politécnica de Madrid
Libros que también te pueden interesar
MÉTODOS DE COMPRA
* Precios con IVA
(Incluye 1 año de alquiler del libro digital) |
---|
21,00 € |
Busca el término o términos dentro de cada uno de los libros
