
ÁLGEBRA LINEAL 8ED.
Bernard Kolman y David R. Hill
Editorial: Pearson
Edición: 8
Fecha Publicación: 2006
ISBN: 9789702606963
ISBN ebook: 9786074426168
Páginas: 764
Grado: Universitario
Área: Ciencias y Salud
Sección: Matemáticas
Idioma: Español
Etiquetas: Descatalogado, Biotecnología, U. del País Vasco, EHU
Tweet
Edición: 8
Fecha Publicación: 2006
ISBN: 9789702606963
ISBN ebook: 9786074426168
Páginas: 764
Grado: Universitario
Área: Ciencias y Salud
Sección: Matemáticas
Idioma: Español
Etiquetas: Descatalogado, Biotecnología, U. del País Vasco, EHU
Tweet
1 Ecuaciones lineales y matrices 1
1.1 Sistemas lineales 1
1.2 Matrices 10
1.3 Producto punto y multiplicación de matrices 21
1.4 Propiedades de las operaciones con matrices 39
1.5 Transformaciones matriciales 52
1.6 Soluciones de sistemas de ecuaciones lineales 62
1.7 La inversa de una matriz 91
1.8 Factorización LU (opcional) 107
2 Aplicaciones de ecuaciones lineales
y matrices (opcional) 119
2.1 Introducción a la teoría de códigos 119
2.2 Teoría de gráficas 125
2.3 Creación de gráficos por computadora 135
2.4 Circuitos eléctricos 144
2.5 Cadenas de Markov 149
2.6 Modelos económicos lineales 159
2.7 Introducción a wavelets (ondeletas u onditas) 166
3 Determinantes 182
3.1 Definición y propiedades 182
3.2 Desarrollo por cofactores y aplicaciones 196
3.3 Determinantes desde un punto de vista computacional 210
4 Vectores en Rn 214
4.1 Vectores en el plano 214
4.2 n-vectores 229
4.3 Transformaciones lineales 247
vii
CONTENIDO
5 Aplicaciones de vectores
en R2 y R3 (opcional) 259
5.1 Producto cruz en R3 259
5.2 Rectas y planos 264
6 Espacios vectoriales reales 272
6.1 Espacios vectoriales 272
6.2 Subespacios 279
6.3 Independencia lineal 291
6.4 Bases y dimensión 303
6.5 Sistemas homogéneos 317
6.6 El rango de una matriz y sus aplicaciones 328
6.7 Coordenadas y cambio de base 340
6.8 Bases ortonormales en Rn 352
6.9 Complementos ortogonales 360
7 Aplicaciones de espacios vectoriales
reales (opcional) 375
7.1 Factorización QR 375
7.2 Mínimos cuadrados 378
7.3 Algo más sobre codificación 390
8 Valores propios, vectores propios
y diagonalización 408
8.1 Valores propios y vectores propios 408
8.2 Diagonalización 422
8.3 Diagonalización de matrices simétricas 433
9 Aplicaciones de valores propios
y vectores propios (opcional) 447
9.1 La sucesión de Fibonacci 447
9.2 Ecuaciones diferenciales 451
9.3 Sistemas dinámicos 461
9.4 Formas cuadráticas 475
9.5 Secciones cónicas 484
9.6 Superficies cuádricas 491
10 Transformaciones lineales y matrices 502
10.1 Definiciones y ejemplos 502
10.2 El núcleo y la imagen de una transformación lineal 508
10.3 La matriz de una transformación lineal 521
10.4 Introducción a fractales (opcional) 536
viii Contenido
11 Programación lineal (opcional) 558
11.1 El problema de la programación lineal; solución geométrica 558
11.2 El método símplex 575
11.3 Dualidad 591
11.4 Teoría de juegos 598
12 MATLAB para álgebra lineal 615
12.1 Entrada y salida en MATLAB 616
12.2 Operaciones matriciales con MATLAB 620
12.3 Potencias de matrices y algunas matrices especiales 623
12.4 Operaciones elementales por fila con MATLAB 625
12.5 Inversas de matrices en MATLAB 634
12.6 Vectores en MATLAB 635
12.7 Aplicaciones de las combinaciones lineales en MATLAB 637
12.8 Transformaciones lineales en MATLAB 640
12.9 Resumen de comandos de MATLAB 643
APÉNDICE A Número complejos A1
A-1 Número complejos A1
A-2 Números complejos en álgebra lineal A9
APÉNDICE B Instrucción adicional A19
B-1 Espacios con producto interno (requiere conocimientos de cálculo) A19
B-2 Transformaciones lineales invertibles y compuestas A30
Glosario para álgebra lineal A39
Respuestas A45
Índice I1
*La edición digital no incluye códigos de acceso a material adicional o programas mencionados en el libro.
Este libro presenta una introducción al álgebra lineal y a algunas de sus aplicaciones importantes. Está pensado para alumnos de nivel medio y avanzado, y cubre más material del que se requeriría para impartir un curso semestral o trimestral. Omitiendo algunas secciones, es posible:abarcar en un semestre o en un trimestre los elementos esenciales del álgebra lineal (incluyendo los valores y vectores propios), enseñar cómo utilizar la computadora en problemas de álgebra lineal, y dedicar algún tiempo a varias aplicaciones relacionadas con el tema. Si se toma en cuenta que existe gran cantidad de aplicaciones de álgebra lineal en disciplinas como matemáticas, física, biología, química, ingeniería, estadística, economía, finanzas, psicología y sociología, no resulta exagerado afirmar que esta materia es una de las que más impacto tendrá en la vida de los estudiantes. Por otro lado, el contenido de esta obra puede utilizarse también en un curso de álgebra lineal con duración de un año, o para impartir un segundo curso del tema con hincapié en las aplicaciones. Al final del prefacio proponemos cierto ritmo para estudiar el material básico. El nivel y el ritmo del curso se pueden modificar fácilmente, variando el tiempo que se invierta en el material teórico y en las aplicaciones. Contar con conocimientos de cálculo diferencial e integral no es un requisito; sin embargo, se incluyen varios ejemplos y ejercicios en que se utilizan ciertos aspectos básicos de cálculo, a los que añadimos la nota “Requiere conocimientos de cálculo”. En el texto se subrayan los aspectos computacionales y geométricos de la materia, manteniendo la abstracción en un nivel mínimo. De acuerdo con lo anterior, en ocasiones omitiremos las demostraciones de algunos teoremas, difíciles o poco provechosas, a la vez que ampliaremos su ilustración mediante ejemplos. Las demostraciones tienen el nivel adecuado para el estudiante. También hemos centrado nuestra atención en las áreas esenciales del álgebra lineal; el libro no pretende describir la materia en forma exhaustiva. Novedades en la octava edición Nos complace mucho la amplia aceptación que han tenido las primeras siete ediciones de esta obra. El éxito alcanzado por el movimiento para la reforma del cálculo realizado en Estados Unidos durante los últimos años, dio lugar a que se hayan comenzado a gestar ideas para mejorar la enseñanza del álgebra lineal. El grupo de estudio del programa de álgebra lineal y otros de carácter similar han hecho varias recomendaciones en este sentido. Al preparar esta edición, las hemos tomado en cuenta, así como las sugerencias de profesores y estudiantes. Aunque realizamos muchos cambios en esta edición, nuestro objetivo sigue siendo el mismo que en las anteriores: desarrollar un libro de texto que ayude al maestro a enseñar y al estudiante a aprender las ideas básicas del álgebra lineal, así como a comprender algunas de sus aplicaciones. Para lograrlo, esta edición incluye las características siguientes:·Se agregaron estas nuevas secciones: • Sección 1.5, Transformaciones matriciales: introduce, desde muy temprano, algunas aplicaciones geométricas. • Sección 2.1, Introducción a la teoría de códigos: junto con un material de apoyo sobre matrices binarias que se presenta a lo largo de los primeros seis capítulos, esta nueva sección proporciona una introducción a los conceptos básicos de la teoría de códigos. • Sección 7.3, Algo más sobre codificación: desarrolla algunos códigos sencillos y sus propiedades básicas relacionadas con el álgebra lineal.·Se agregó más material geométrico. También se añadieron ejercicios nuevos a todos los niveles. Algunos de ellos corresponden al tipo de respuesta abierta —lo que permite explorar con más amplitud un tema y realizar nuevos hallazgos—, mientras que otros son de desarrollo. Se agregaron más ilustraciones. Se actualizaron los archivos M de MATLAB a versiones más recientes. Al final de cada sección se agregó un listado de términos clave, lo que refleja nuestro interés en desarrollar aún más las habilidades de comunicación. En las preguntas de falso/verdadero se pide al estudiante que justifique su respuesta, lo que da una oportunidad adicional para exploración y redacción. Al repaso acumulativo de los primeros diez capítulos se agregaron 25 preguntas de falso/verdadero. Además se añadió un glosario, característica totalmente nueva en esta edición. Ejercicios Los ejercicios se agrupan en tres clases. Los de la primera, Ejercicios, son de rutina. En la segunda, Ejercicios teóricos, incluimos los que cubren las lagunas de algunas demostraciones y amplían el material tratado en el texto. Algunos de ellos piden una solución oral. En esta era de la tecnología, es particularmente importante escribir con cuidado y precisión, y estos ejercicios ayudarán al estudiante a mejorar esta habilidad, además de elevar el nivel del curso y plantear retos a los alumnos más dotados y con más interés. La tercera clase, Ejercicios con MATLAB (ML) consta de ejercicios preparados por David R. Hill para resolverse con ayuda de MATLAB o de algún otro paquete de software matemático. Las respuestas a los ejercicios numéricos impares y los ejercicios ML aparecen al final del libro. Al término del capítulo 10 se da un repaso acumulativo del material básico de álgebra lineal presentado hasta allí, el cual consiste en 100 preguntas de falso/ verdadero (las respuestas se dan al final del texto). Presentación La experiencia nos ha enseñado que los conceptos abstractos deben presentarse de manera gradual y basarse en fundamentos firmes. Por lo tanto, comenzamos el estudio del álgebra lineal con el tratamiento de las matrices como simples arreglos de números que surgen de manera natural en la solución de sistemas de ecuaciones lineales, un problema familiar para el estudiante. En cada nueva edición nos hemos preocupado por perfeccionar los aspectos pedagógicos de la exposición. Las ideas abstractas se han equilibrado cuidadosamente, y acentúan los aspectos geométricos y de cálculo de la materia.
Drexel University
David R. Hill
Temple University